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Method S1: Details of MICE-DURR for three types of data

We start the iterative procedure with some initial values. For example, all the elements in z,,; ; are filled in with the average of

the observed values of z; (j = 1,2,...,1). Define the corresponding initial completed dataset as yAUR
In the m-th iteration:

(i) If z; follows a Gaussian distribution, the model is
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where 7 is the number of cases with observed z; and € ~ N (0, o; 21, ,)

A regularized regression method is used to fit model (1). The parameter estimates can be obtained as follows:
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Where P, (6) is a regularization function. We consider the mean of squared residuals as an estimate of 67, denoted by
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(ii) If z; follows a Bernoulli distribution, the model is
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A regularized regression method is used to fit model (2). The parameter estimates can be obtained as follows:
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Where P, (6;) is a regularization function.
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Zjmis s predicted with z; , by drawing randomly from the predictive distribution Bernoulli ( p~m o =
L+exp(6y') Ln—r; +W .0,

Jomis? j

Let ZEM) = (Zi'r,’;rzmzjﬂbs)'



(iii)

If z; follows a Poisson distribution, the model is
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A regularized regression method is used to fit model (3). The parameter estimates can be obtained as follows:
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Where P, (0;) is a regularization function.
(m)
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by drawing randomly from the predictive distribution
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We denote the updated data set after the m-th interation by Z(™) and repeat the procedures iteratively. After the algorithm
converges, the last M imputed data sets after appropriate thinning are chosen for subsequent standard complete-data analysis.

Method S2: Details of MICE-IURR for three types of data

We start the iterative procedure with some initial values. For example, all the elements in z,,;; ; are filled in with the average of
the observed values of z; (j = 1,2,...,1). Define the corresponding initial completed dataset as yUN
In the m-th iteration:

®

(ii)

If z; follows a Gaussian distribution, we use a regularized regression method to fit a multiple linear regression model
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regarding z; . as the outcome variable and W' as the predictor variable, and identify the active set, ﬁ ™) Let

W /“(m denote the subset of W( ™) that only contains the active set. Correspondingly, denote two components of W Ztm)
j

by W ;x,,,) N and W’ 5/’?'" obs” Then the model is
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where &; ~ N(0,071,;) and 1,, is a vector of length r; with all entries one.

Approximate the distribution of (6 ;,0;, 0? ; 2) by using a standard inference procedure such as maximum likelihood.

~(m)  (m)
(60,5, sz)/ ~NOyre;ZyLe)

~lm . . e . . . . .
Where GZ(WL)E is the MLE of parameters in model (4) and Z;;nL)E is the variance-covariance matrix of the estimated
parameters.
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If z; follows a Bernoulli distribution, we use a regularized regression method to fit a multiple linear regression model
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regarding z; ., as the outcome variable and W' as the predictor variable, and identify the active set, 5/’”\( "™ Let

W »(,,,) denote the subset of W( " that only contains the active set. Correspondingly, denote two components of W Ztm)
7J

by W Afm) and W _«» , . Then the model is
J"j ,0bs

logit(Pr(zLObs = 1|W97;m),()bb‘)) = 6()7J‘1rj —+ Wy\j(m),obs‘ej’ (5)

Approximate the distribution of (8 ;, 0 ;) by using a standard inference procedure such as maximum likelihood.
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Where 51(‘7215 is the MLE of parameters in model (5) and iﬂ’L)E is the variance-covariance matrix of the estimated
parameters.
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enerate a prediction for z;,is: randomly draw (6, /,6; ) from N(6yx, Zye), and predict z; s with by
drawing randomly from the predictive distribution
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(iii) If z; follows a Poisson distribution, we use a regularized regression method to fit a multiple linear regression model
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regarding z; . as the outcome variable and W
W _.,) denote the subset of Wg.m) that only contains the active set. Correspondingly, denote two components of W Ztm
j j
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Approximate the distribution of (8 ;, 0 ;) by using a standard inference procedure such as maximum likelihood.
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Where 61(1le is the MLE of parameters in model (6) and ZZ(‘Z)E is the variance-covariance matrix of the estimated

parameters.

Generate a prediction for z; ,;: randomly draw (§(§';') ,55.’”)) from N (5,(JlnL)E,A1(1:InL)E), and predict z; ;s with Z%Zis by

drawing randomly from the predictive distribution
. " ~(m) T
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We denote the updated data set after the m-th interation by 7™ and repeat the procedures iteratively. After the algorithm
converges, the last M imputed data sets after appropriate thinning are chosen for subsequent standard complete-data analysis.
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